
RCS: An Intelligent Agent Architecture

Jim Albus, Tony Barbera, Craig Schlenoff

National Institute of Standards and Technology (NIST)
100 Bureau Drive, Stop 8230

Gaithersburg, MD 20899
(james.albus, tony.barbera, craig.schlenoff) @nist.gov

Abstract
RCS (Real-time Control System) is an intelligent agent
architecture designed to enable any level of intelligent
behavior, up to and including human levels of performance.
RCS was inspired 30 years ago by a theoretical model of
the cerebellum, the portion of the brain responsible for fine
motor coordination and control of conscious motions. It
was originally designed for sensory-interactive goal-
directed control of laboratory manipulators. Over three
decades, it has evolved into a real-time control architecture
for intelligent machine tools, factory automation systems,
and intelligent autonomous vehicles.

In this paper, we describe the 4D/RCS architecture, how it
relates to other popular intelligent agent architectures, how
it addresses the three most significant theoretical arguments
against intelligent agent architectures, and its underlying
engineering methodology.

1.0 Introduction
Interest in intelligent agent architectures has grown rapidly
over the past two decades as a result of a confluence of
three important events:

1. The emergence of a computational theory of

intelligence: A fully developed scientific theory of
intelligence does not yet exist, but an understanding
of how to build intelligent systems is developing
faster than most people appreciate. Progress is rapid
in many different fields. Recent results from a
number of different disciplines, including the
neurosciences, cognitive psychology, artificial
intelligence, robotics, and intelligent machines, have
laid the foundations for a computational theory of
intelligence [3].

2. The continued exponential growth of computing
power: The estimated computational power of the
human brain is already rivaled by existing
supercomputers. Within the next quarter century,
computational power approaching that of the human
brain can be expected from a small network of
desktop machines [17]. This means that serious
attempts can be made to model the functional
capabilities of the brain in perception, cognition, and
behavioral skills. Of course, having the

computational power is only part of the challenge; the
rest is making proper use of it.

3. Growth in user interest for military and
commercial applications: Potential applications in
both civilian and military systems have begun to
emerge for the control of autonomous vehicles. In
the United States, military interest in unmanned
vehicles (air, ground, and sea) has grown rapidly as
autonomous vehicle capabilities have been
demonstrated that far exceed previous expectations
[24]. In Japan, Europe, and the U.S., automotive
companies are actively pursuing commercial
applications of adaptive cruise control, crash warning
systems, and collision avoidance technology. The
eventual result may be the intelligent autonomous
automobile.

However, the increased interest in intelligent agent
architectures has resulted in various disparate approaches
to their development and implementation. In this paper, we
discuss one of those approaches, the 4D/RCS (Real-time
Control System) and compare it to some of the other
architectures being developed. We also show how 4D/RCS
addresses some of the major theoretical arguments against
intelligent agent architectures, namely, abductive
inference, symbol grounding, and the frame problem.

Section 2 will discuss the characteristics of various
intelligent agent architectures, Section 3 describes the
4D/RCS reference model, Section 4 describes how
4D/RCS addresses some of the theoretical problems of
computational models, Section 5 steps through the RCS
methodology for system design, and Section 6 concludes
the paper.

2.0 Intelligent agent architectures
An intelligent agent architecture can be defined as the
organizational structure of functional processes and
knowledge representations that enable the modeling of
cognitive phenomena. Over the past half-century, several
intelligent agent architectures have been developed. One
of the earliest was the ACT architecture [8]. ACT grew out
of research on human memory. Over the years, ACT has

O
PE

R
A

TO
R

 IN
TE

R
FA

C
E

SP WM BG

SP WM BG

SP WM BG

SP WM BG

Pixels

5 m
maps

50 m
maps

SP WM BG SP WM BG

SP WM BG

0.5 second plans
Steering, speed

5 second plans
Subtask on object surface
Obstacle-free paths

SP WM BGSP WM BG

SP WM BGSP WM BG SP WM BG

SERVO

PRIMITIVE

SUBSYSTEM

SURROGATE SECTION

SURROGATE PLATOON

SENSORS AND ACTUATORS

Plans for next 2 hours

Plans for next 24 hours

0.05 second plans
Actuator output

SP WM BGSP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG SP WM BG

500 m maps

LocomotionCommunication Mission Package

VEHICLE Plans for next 50 seconds
Task to be done on objects of attention

Plans for next 10 minutes
Tasks relative to nearby objects

5 km maps

50 km maps

RSTA

500 km maps SURROGATE BATTALION

Tasks relative to distant objects

Daily schedule of tasks

Figure 1. A 4D/RCS reference model architecture for an autonomous vehicle.

evolved into ACT* and more recently, ACT-R. ACT-R is
being used in several research projects in an Advanced
Decision Architectures Collaborative Technology Alliance
for the U.S. Army [15]. ACT-R is also being used by
thousands of schools across the country as an algebra tutor
– an instructional system that supports learning-by-doing.

Another well-known and widely used architecture is Soar.
Soar grew out of research on human problem solving, and
has been used for many academic and military research
projects in problem solving, language understanding,
computational linguistics, theorem proving, and cognitive
modeling [18]. A recent commercial version of Soar (Tac-
Air Soar) has been developed to address a number of
simulation and training problems for the U.S. Air Force1
[1].

Other intelligent agent architectures include Prodigy,
ICARUS, IMPRINT, EPIC, and RCS. Like Soar, Prodigy
uses search through a problem space to achieve goals cast
as first-order expressions [19]. ICARUS is a reactive
architecture that encodes knowledge as reactive skills [23].
IMPRINT is a task description language designed for the
Army to capture the procedural specification of tactical
behavior scenarios. It contains a dynamic, stochastic,
discrete-event network modeling tool designed to help
assess the interaction of soldier and system performance

throughout the system lifecycle – from concept and design
through field testing and system upgrades. IMPRINT has
been integrated with ACT-R to model military behaviors
[9]. EPIC is an architecture that models the detailed timing
of human perceptual, cognitive, and motor activity,
including the input/output characteristics of the nervous
system connecting the higher level cognitive functions to
the external world [16]. RCS is a control system
architecture inspired by a theory of cerebellar function [2].
RCS models the brain as a hierarchy of goal-directed
sensory-interactive intelligent control processes that
theoretically could be implemented by neural nets, finite
state automata, or production rules [7].

RCS is similar to other intelligent agent architectures in
that it represents procedural knowledge in terms of
production rules, and represents declarative knowledge in
abstract data structures such as frames, classes, and
semantic nets. RCS differs from other intelligent agent
architectures in that it also includes signals, images, and
maps in its knowledge database, and maintains a tight real-
time coupling between iconic and symbolic data structures
in its world model. RCS is also different in: a) its level of
specificity in the assignment of duties and responsibilities
to agents and units in the behavior generating hierarchy; b)
its emphasis on controlling real machines in real-world
environments; and c) its malleability to the specific
requirements of the domain. To elaborate on (c), when
using other architectures, one is often getting a monolithic
piece of software and then adds knowledge, often in the
form of rules and chunks. Within 4D/RCS, one is able to
apply appropriate planning systems, sensory processing

1 The name of commercial products or vendors does not
imply NIST endorsement or that this product is necessarily
the best for the purpose.

algorithms, and capture knowledge in a format that is most
conducive to the domain of interest. RCS does not dictate
what form that knowledge must take. Instead, it provides a
framework that allows one to apply whatever knowledge
representation technique that is most appropriate for the
knowledge that is to be represented.

RCS evolved from the bottom up as a real-time intelligent
control system for real machines operating on real objects
in the real world. The first version of RCS was developed
as a sensory-interactive goal-directed controller for a
laboratory robot. Over the years, RCS has evolved into an
intelligent controller for industrial robots, machine tools,
intelligent manufacturing systems, automated general mail
facilities, automated stamp distribution systems, automated
mining equipment, unmanned underwater vehicles, and
unmanned ground vehicles [4]. Throughout its
development, all symbols in the RCS world model have
been grounded to objects and states in the real world.

The most recent version of RCS (4D/RCS) embeds
elements of Dickmanns [13] 4-D approach to machine
vision within the RCS control architecture. 4D/RCS was
designed for the U.S. Army Research Lab AUTONAV and
Demo III Experimental Unmanned Vehicle programs and
has been adopted by the Army Future Combat System
program for Autonomous Navigation Systems [5].

3.0 The 4D/RCS Reference Model
Architecture

A reference model architecture describes the functions,
entities, events, relationships, and information flow that
takes place within and between functional modules. A
reference model provides a framework for the
specification of functional requirements, the design of
software to meet those requirements, and the testing of
components and systems. A block diagram of a 4D/RCS
reference model architecture is shown in Figure 1. Each
node in the architecture represents an operational unit in
an organizational hierarchy. Each node contains a
behavior generation (BG), world modelling (WM),
sensory processing (SP), and value judgment (VJ)
processes together with a knowledge database (KD) (not
shown in Figure 1.)

Each node contains both a deliberative and a reactive
component. Bottom-up, each node closes a reactive
control loop driven by feedback from sensors. Top-down,
each node generates and executes plans designed to satisfy
task goals, priorities, and constraints conveyed by
commands from above. Within each node, deliberative
plans are merged with reactive behaviors.

Each BG process accepts tasks and plans and executes
behavior designed to accomplish those tasks. The internal
structure of the BG process consists of a planner and a set
of executors (EX). Task commands from a supervisor BG

process are sent to a planner module that decomposes each
task into a set of coordinated plans for subordinate BG
processes. For each subordinate there is an Executor that
issues commands, monitors progress, and compensates for
errors between desired plans and observed results. The
Executors use feedback to react quickly to emergency
conditions with reflexive actions. Predictive capabilities
provided by the WM may enable the Executors to generate
preemptive behavior.

SP and WM processes interact to support windowing (i.e.,
attention), grouping (i.e., segmentation), recursive
estimation (e.g., Kalman filtering), and classification (i.e.,
detection or recognition). WM processes generate and
update images, maps, entities, events, attributes, and states
in the KD. Working together, BG, WM, and SP enable
deliberative, reactive, and preemptive behavior.
Coordination between subordinate BG processes is
achieved by cross-coupling among plans and sharing of
information among Executors via the KD.

At the top, the highest-level task is defined by the highest-
level (i.e., mission) goal. At each successive level in the
hierarchy, commanded tasks from above are decomposed
into subtasks that are sent to subordinates below. Finally,
at the bottom, subcommand outputs are sent to actuators to
generate forces and movements. Also at the bottom,
sensors transform energy into signals that provide sensory
input.

4.0 Discussion
4D/RCS addresses three of the most significant theoretical
arguments raised against the possibility of computers
achieving human levels of intelligence. These are:

4.1. Abductive Inference
Abductive inference is the process of reasoning backward
from consequent to antecedent. It has been described by
Pierce [20] as “nothing but guessing.” The inability of
local syntactical systems to perform abductive inference is
cited by Fodor [14] as why he believes computational
processes cannot produce true intelligence. To Fodor, all
computer operations are inherently local and syntactic, and
hence fundamentally incapable of context sensitive logic.

But the RCS architecture is driven top-down by high level
mission goals, priorities, and constraints. These provide
global context for making gestalt hypotheses (i.e.,
perceptual guesses) regarding where to focus attention and
how to group (or segment) signals and pixels into patterns
and regions that correspond to entities and events in the
external world. At each level of sensory processing,
abductive inferences in the form of gestalt hypotheses are
used to segment signals and images. Abductive inferences
can be tested by comparing expectations based on
hypotheses against observations from sensors. For each

hypothesized entity or event, variance between predictions
and observations provides a measure of confidence in the
hypothesis. When variance is small, confidence is high,
and vice versa. If confidence falls below threshold, a
hypothesis is rejected and another generated. This
supports Pierces’s claims that abduction can be
represented in a “perfect definite logical form.”

4.2 Symbol Grounding
Symbol grounding is the establishment of direct
correspondence between internal symbolic data and
external real world entities, events, and relationships. The
inability of local syntactical systems to perform symbol
grounding is cited by Searle [22] as why he believes
computational processes can never be really intelligent.
To Searle, computer operations are without semantic
meaning because the symbols they manipulate are never
grounded in the real world.

But the 4D/RCS architecture establishes and maintains a
direct link between the internal world model and the
external real world. An RCS attention process directs
sensors toward regions of the world that are important. An
RCS segmentation process applies context-sensitive gestalt
grouping hypotheses to patterns of signals from sensors.
As a result of segmentation, spatial and temporal
groupings are linked to named symbolic data structures
(such as C structs, or C++ objects and classes) that
represent hypothesized entities and events. Geometric and
temporal attributes of hypothesized groups are computed,
and relationships (represented as pointers) between
entities, events, and their constituent elements are
established and maintained. Finally, entities and events
are classified and recognized by comparing observed
attributes to stored attributes of class prototypes. This
entire process is repeated at each stage of sensory
processing at a rate fast enough to capture the dynamics of
the entities and events being attended to.

This recursive two-way interaction between model-based
expectations and sensory-based observations provides
symbol grounding. Expectations based on attributes and
class membership of entities and events in the world model
are constantly compared against observations derived from
sensors monitoring corresponding entities and events in
the real world. In this way, symbolic representations of
entities, events, and relationships in the 4D/RCS world
model are grounded to entities, events, and relationships in
the real world.

4.3 The Frame Problem
The frame problem is the problem of predicting what in
the world changes as the result of an action, and what stays
the same. The frame problem results from attempting to
model the world entirely in terms of logical propositions
[21]. Many important features about the world (in
particular geometry and dynamics) are not easily modeled
by logical propositions. For example, as I write this, I am

pondering the difficulties of using logical propositions to
model a bookcase in my office that is filled with books,
papers, boxes, folders, and assorted junk and trash. As I
ponder this, a fly maneuvers at high speed (in terms of
body lengths per second) around my bookcase without
danger of collision. Apparently, the fly’s internal model
of the world enables it to fly between shelves and stacks of
books and papers without collision, and to land on the tip
of a straw in an old soda can without difficulty. Surely the
fly’s brain does not represent my bookcase in terms of
logical propositions.

It has been said that a picture is worth a thousand words. I
would venture that a 4-D representation (3 spatial + 1
temporal) of a complex scenario in a dynamic environment
may be worth a million logical propositions.

On the other hand, the location and direction of motion of
objects in the world are easily represented in an image or
map, and distinguishing what changes from what does not
in a dynamic environment can be easily determined by
simple comparison between one visual image and the next.
That is why 4D/RCS representations include iconic or
metrical formats such as visual images and maps in
addition to symbolic data structures such as frames,
objects, classes, and rules. Both iconic and symbolic
formats are linked together by pointers in a real-time
relational database that is updated in each node at a rate
that is commensurate with the requirements of the
planning and control processes within that node.

At the lowest level, signals and images from sensors are
sampled many times per second and compared with
expectations generated from world model predictions. At
all levels, differences between observations and
expectations are used to update the internal model by a
process of recursive estimation. Predictions from the
world model are projected back into sensor coordinates,
overlaid on, and cross correlated with images and maps of
the external world. The result is that symbols in the world
model are linked to, and can be projected back onto, pixels
and regions in images and maps. In this way, the internal
world model is effectively servoed to the external real
world, and symbolic data structures in the world model are
grounded to entities and events in the real world. Thus,
the ability for 4D/RCS to accommodate and integrate
multiple types of representations into a common
architecture takes major steps in addressing the frame
problem [6].

At each echelon of the behavior generation hierarchy, the
range and resolution of knowledge about the world is
defined by the requirements of the task. At each echelon,
an attention process, driven by task priorities and
differences between observations and predictions, selects
those regions of the world that are important to the task.
At each echelon, the world model enables 4D/RCS
behavior generation processes to plan tasks and paths that

DOT Driving Manuals
State Driving Codes

Traffic Control Devices

TASK
ANALYSIS

+

Domain Experts

GotoDestination...

GoOn…Rd TurnRightOnto...RdTurnLeftOnto...Rd

FollowLane

DoTrajSeg

DriveOnTwoLaneRd PassVehInFront NegotiateLaneConstriction

ChangeToRightLaneChangeToLeftLane

GoOn…Rd GoOn…Rd

FollowLane FollowLane

DoTrajSegDoTrajSegDoTrajSeg

Turn AccelerateForward SlowDown

GotoDestination...

GoOn…Rd

PassVehInFront

FollowLane

DoTrajSeg

Vehicle
Trajectory

Destination
Manager

Driving
Behaviors

Route Segment
Manager

Elemental
Maneuvers

Turn

Steering
Control

AccelerateForward

Speed
Control

P
N
D
2
1

MAP to AGENT
ARCHITECTURE

MAP TASK DECISIONS
to STATE-TABLES

Task Decision Tree
(On-road Driving Example)

Hierarchical Organization of
Agent Control Modules

SENSORY
PROCESSING

KNOWLEDGE
DATABASE

BEHAVIOR
GENERATION

WORLD
MODEL

VALUE
JUDGMENT

(Executing)

(FollowLane)(Executing)

SENSORY
INPUT

(Driving Behaviors Agent
Control Module)

Select “PassVehInFront”
Plan State-Table

(PassVehInFront)

D riveOnTw oLaneRd
PassVehInFront

PassVehInFront

DriveOnTw oLaneRd

N egotiateLaneConstrict

.
PassVehInFront .

BEHAVIOR
GENERATION

COMMANDED
TASK (GOAL)

STATUS

STATUS

NEXT
SUBGOAL

(PassVehInFront)

(FollowLane)

STATE-TABLES
PLAN

LegalToPass

EnvironmentSafeToPass

SituationInFrontOKtoPass

SituationInBackOKtoPass

OnComingTrafficOKtoPass

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoRailroadXInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

“NoPassZone”-

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

NotInEffect

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

Lanes(pos, dir, width,
curvature)

MapOfPassZone (speeds,
veh-positions, accel)

WeatherNotObscuring

WindsNotSignificant

OwnVehicleCapable
RoadSurfaceSuitable
RoadNotTooSlippery

RoadSplashNotSignifcant
 S1 ConditionsGoodToPass

PLAN STATE TABLE

PassVehInFront

 S2 ChangeToLeftLane

S2 InPassingLane S3 FollowLane

S4 ReturnedToLane S0 FollowLane
 Done

NewPlan S1 FollowLane

 S3 ClearOfPassedVehicle S4 ChangeToRightLane

ConditionsGoodToPass

NoVehicleEnteringRoad
VehInFrontNotBlockingSight

NoCurveBockingSight
NoHillBlockingSight

NoVehicleTurningLeft

NoPedestrianOnRoadSide

NoBicyclist

VehiclesDrivingNormally

NoVehiclePassing

SufficientReturnSpace

NoVehicleEnteringLane

NoPostalVehicleStopping

NoActiveEmergencyVehicles

NoDeliveryVehicleStopping

VehicleNotAttemptingToPass
VehicleNotTailgating

VehicleNotClosingRapidly
NoActiveEmergencyVehicles

DistToOnComingVehicleOK
OncomingVehiclesNormal

BEHAVIOR
GENERATION

WORLD MODEL
KNOWLEDGE

World StatesObjects, Features

Measurement
Resolutions

Input State/Situation Output Action

CrossBuck(pos)

0.11 degrees @ 600 ft

15 ft

9 in

54 in

SENSORY
PROCESSING

STEP 1 STEP 2

STEP 3

STEP 4STEP 5

STEP 6

Lights (pos, size, state)
Crossing Gate (pos,

Signs (pos, facing-dir, loc,
text and graphics)

Tracks (pos, size, dir)

Train (pos, dir, state)

CrossBuck(length,
width, orient, pos)

length, height, state)

ColorCameras LADAR
Radar Stereo FLIR Nav

Segmented Groupings

Features and Attributes

Objects and Maps

Object Groupings and
Classifications

Figure 2. The six steps of the RCS methodology for knowledge acquisition and representation.

optimize a cost function that is defined by the global
context of task goals, intent, priorities, and constraints.

5.0 Engineering Methodology
Although RCS is often thought of as a reference model
architecture, as described above, there is also a
corresponding methodology that accompanies it. Over the
past thirty five years, as many different applications have
been implemented using the RCS reference model
architecture, an RCS software engineering methodology
has evolved [11]. Thus, one can think of RCS as both an
architecture and a methodology.

In Figure 2, an example of the RCS methodology for
designing a control system for autonomous on-road
driving under everyday traffic conditions is summarized in
six steps. Each of these six steps is performed during
design time, and is performed via human analysis (as
described below).

5.1. Task Decomposition Design
The first step is to gather as much task related knowledge
as possible with the goal of defining a set of commands
that incorporate all of the activities at all levels of detail.

For on-road driving this knowledge source would include
driving manuals, state and federal driving codes, manuals
on traffic control devices and detailed scenario narratives
by subject matter experts (SMEs) of large numbers of
different driving experiences.

Scenarios and examples are gone over in an attempt to
come up with the names of commands that describe the
activities at finer and finer resolutions of detail. Figure 3
provides an example. The high level goal of “Goto
destination” (such as “go to post office”) is broken down
into a set of simpler commands – “GoOnRoad-name”,
“TurnLeft Onto-name” (MapQuest-like commands). At
the next level down, these commands are broken down to
simpler commands such as “Drive On Two Lane Road”,
“Pass Vehicle In Front” and these are then decomposed to
yet simpler commands such as “FollowLane”,
ChangeToLeftLane”, etc.

Four very important things are being done with the
knowledge in this step.

1. The first is the discovery and naming of simpler
component subtasks that go into making up the
more complex tasks.

2. The second is that for each of these component
subtasks, we are defining a subtask command.

3. The third is the understanding of the coordination
of subtask activities that the task involves. This is
identified by the analysis of scenarios of
remembered specific examples.

4. The fourth is the careful grouping of these
commands by layer and decomposition to ensure
that the example on-road driving tasks can be
completely described, from the start to finish of a
scenario, by the proper sequencing of these
commands at the appropriate levels.

This first step of the methodology sets the number of
layers of agent control modules that will be required by
step 2 (below) to execute the task decomposition.

5.2 Step 2 – Agent Control Module Organization
Once a set of commands is defined, we need an
organization to execute them. This step is identical to
laying out an organizational structure of people in a
business or the military. You know what you want to do
at various levels of detail – now you need an organization
of intelligent agents to do it. This structure is built from

the bottom up. The above detailed task decomposition
will tell us how many layers of agents to have in our
organization but not how many agents are at a level or
how they are grouped and coordinated. This step starts at
the bottom with an agent control module controlling each
actuator in the system and then uses the knowledge of the
task activities to understand which subordinate agents are
grouped under which supervisor to best coordinate the task
commands from Step 1.

Figure 3. Task decomposition decision tree for on-road
driving example.

GotoDestination...

GoOn…Rd TurnRightOnto...RdTurnLeftOnto...Rd

FollowLane

DoTrajSeg

DriveOnTwoLaneRd PassVehInFront NegotiateLaneConstriction

ChangeToRightLaneChangeToLeftLane

GoOn…Rd GoOn…Rd

FollowLane FollowLane

DoTrajSegDoTrajSegDoTrajSeg

Turn AccelerateForward SlowDown

Figure 4 illustrates how a grouping of agent control
modules is assembled to accomplish the commands
defined in Step 1. In this example, the lowest level servo
control modules are represented by icons of the actuators
being controlled. The steering servo control module is
represented by a steering wheel icon, the brake servo by a
brake pedal icon, etc. For this simple example, only four
actuator control module icons are shown. The brake,
throttle, and transmission servo agent control modules are
grouped under a single supervisor agent control module,
which we will call the Speed Control Agent. This
supervisor agent control module will receive commands
such as “AccelerateForward” (a more general form would
be “Accelerate (magnitude, direction)) and have to
coordinate its output commands to the brake, the throttle,
and the transmission to accomplish them. By a similar
analysis, the Steering Servo Agent is placed under a
supervisor agent we call the Steering Control Agent
Module. The Vehicle Trajectory Control Agent
coordinates steering commands to the Steering Control
Agent with the speed commands sent to the Speed Control
Agent described above. The command decomposition of
the commands at levels above the Vehicle Trajectory
Control Agent are shown being executed by a single agent
at each layer since there are no more subordinate agent
control modules to be coordinated in this simple example.
In a more realistic implementation, there would be
additional agent control modules for ignition and engine
starting, lights, turn signals, windshield wiper/washer,
pan/tilt turrets that carry the sensor sets, etc. This would
be the step at which the organizational structure would be
defined to properly coordinate these modules’ activities in
accordance with step 1 as described in Section 5.1.

5.3. Step 3 – State-Table Definitions
At this stage of the knowledge definition process we know
the vocabulary and syntax of commands. We also know
what set of subcommands each command decomposes
into, and where in the agent control hierarchy these
decompositions take place. Step 3 is to establish the rules
that govern each command’s decomposition into its
appropriate sequence of simpler output commands. These
rules are discovered by first listing the approximate
sequence set of output commands that correspond to a
particular input command to an agent.

Figure 5 illustrates this step with a state-table of the “Pass
Veh(icle) In Front” command at the Driving Behaviors
Agent Control Module. This pass command is
decomposed into five simpler output commands – “Follow
Lane”, “Change to Left Lane”, “Follow Lane”, “Change to
Right Lane”, and “Follow Lane” which are at the
appropriate level of resolution for this layer in the agent
hierarchy. These output commands can be read in
sequence down the right hand column of the state table.
The knowledge that is being added by this step 3 is to
identify and name the situations (the left hand column of
the state-table) that will transition the activity to each of
these output commands. These named situations are the

branching conditions that complete the task decision tree
representation.

Each of these newly named transition situations with their
corresponding output command actions represent a single
production rule that is represented as a single line in the
state-table. The sequence in which these lines (rules) are
executed is ordered by the addition of a state variable (S1,
S2, etc). In the example in Figure 5, the first rule shown in
the state-table says that if this is a “New Plan” (input
condition), then the output action side of the rule (the right
hand side of the state-table) sets the state to “S1” and
outputs the command to “Follow Lane”. As a result of
executing this rule, this module is now in state “S1” and
can only execute rules that include the state value of “S1”
in their input condition. The only rules that will be
searched by this module are those in the state-table that
clusters the rules relating to this particular input command
(“PassVehInFront”). In this state table, there is only one
line (rule) that contains the state value “S1” as one of its
input conditions. Thus, only that line can match and it will
not match until the situation “ConditionsGoodToPass” is
also true. When this situation occurs, this line will match
(this rule will fire) and the module will go to state “S2”
and output the command to “ChangeToLeftLane”. This
output command is sent to the subordinate agent control
module (Elemental Maneuvers Control Module) where it
becomes that module’s input command invoking a
corresponding state-table to be evaluated as described
here.

GotoDestination...

GoOn…Rd

PassVehInFront

FollowLane

DoTrajSeg
Vehicle

Trajectory

Destination
Manager

Driving
Behaviors

Route Segment
Manager

Elemental
Maneuvers

Turn
Steering
Control

AccelerateForwar

Speed
Control

P
N
D
2
1

Figure 5. State-table for the Pass Vehicle In Front command.

 S1 ConditionsGoodToPass

PassVehInFront

 S2 ChangeToLeftLane

S2 InPassingLane S3 FollowLane

S4 ReturnedToLane S0 FollowLane
 Done

NewPlan S1 FollowLane

 S3 ClearOfPassedVehicle S4 ChangeToRightLane

ConditionsGoodToPass

Input State/Situation Output Action

Thus, the large set of rules governing the task decision tree
execution is clustered both by the layer of resolution in the
hierarchy and by the task context of the particular
command at each layer so that only a very small number of
rules have to be searched at any given time. The execution
order of these selected rules is controlled by the addition
of state values. It is important to note that the knowledge

Figure 4. The hierarchical organization of agent control

modules executing the task command decomposition.

discovery, representation and organization have been
completely driven by looking at the problem from the
detailed task decomposition point of view.

We will now make an important summary about the
structuring of the knowledge base in these first three steps.
These three steps were concerned with task knowledge
expressed as the finer and finer branching of the decision
process whereby the output action is sequenced in order to
accomplish the assigned task. This third step identifies
arbitrarily named situations we create to encompass
everything that the task depends upon at this point and at
this level of resolution in its execution. In this example, it
was named “ConditionsGoodToPass”.

These first three steps provide a complete listing of the
task decomposition rules (i.e. these rules that determine
when the system has to do something different in order
maintain progress towards the goal.) These rules have
been grouped into layers of resolution, and within each
layer, clustered into tables of rules relevant to a single
input command. Within each table they are ordered in
their execution sequence by additional state values.

We can think of these first three steps as identifying the
procedural knowledge involved in the task decomposition
process, i.e. defining all of the task branching conditions
and resultant corrective output actions. The next three
steps are to identify all of the knowledge that is used to
evaluate whether or not the branching conditions are true.

5.4. Step 4 – Situation Dependencies on World
States
The world knowledge we want to identify and represent
are those precursor world states that determine the task
branching situation in the input side of the state-tables.
This is best illustrated with an example. Figure 6 shows
the “PassVehInFront” state-table. As discussed above, the
output command to “Change To Left Lane” is issued when
the “ConditionsGoodToPass” situation occurs. We ask of
our expert knowledge sources “what do we have to know
about the state of the world at this time to say that the

conditions are good to pass”. Again, we use detailed
scenarios and our knowledge sources to drill down to the
parameters that go into this situation assessment. We find
that there is a surprisingly large set of things we want to
know. We list these items as they come up in scenarios
and from manuals – “there cannot be an on-coming car
within the passing distance”, “there must be a broken
yellow lane marker on our side of center in the lane”,
“there cannot be a railroad crossing within the passing
distance”, “our own vehicle is not being passed”, etc. We
will call these items world states since they seem to
describe certain attributes about the world that are relevant
to our present task.

The purpose of this step is to provide a listing of all of the
parameters (in terms of named world states) that affect
whether the task branching condition situation is true or
not. We have not identified the sensitivity of the final
situation to these precursor values or what functions are
used to weight and evaluate the individual or combined
truth of these precursor values. The identification of these
world states is independent of whatever technique is used
to implement the control system. Different
implementation paradigms will affect the sensitivity,
weighting, costing, and other evaluation functions. For
example, attributes like the level of driver aggressiveness
may affect the calculation of the length of the required
passing zone that is a precursor to a number of individual
world state calculations related to the
“ConditionsGoodToPass”. How to best represent these
functions and the variables they affect is still an area of
research.

It should be noted that, although these conditions are
determined at design-time, the execution of them are
dependent upon parameters that are only made available at
run-time. Two different implementations of a process
described by the state machine can perform quite
differently depending upon the parameters that are
available at run-time.

Figure 6. The identification of all of the precursor world states used to evaluate whether the situation “ConditionsGoodToPass” is

true or not.

LegalToPass

EnvironmentSafeToPass

SituationInFrontOKtoPass

SituationInBackOKtoPass

OnComingTrafficOKtoPass

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoRailroadXInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

“NoPassZone”-

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

NotInEffect

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

WeatherNotObscuring

WindsNotSignificant

OwnVehicleCapable
RoadSurfaceSuitable
RoadNotTooSlippery

RoadSplashNotSignifcant
 S1 ConditionsGoodToPass

PLAN STATE TABLE

PassVehInFront

 S2 ChangeToLeftLane

S2 InPassingLane S3 FollowLane

S4 ReturnedToLane S0 FollowLane
 Done

NewPlan S1 FollowLane

 S3 ClearOfPassedVehicle S4 ChangeToRightLane

ConditionsGoodToPass

NoVehicleEnteringRoad
VehInFrontNotBlockingSight

NoCurveBockingSight
NoHillBlockingSight

NoVehicleTurningLeft

NoPedestrianOnRoadSide

NoBicyclist

VehiclesDrivingNormally

NoVehiclePassing

SufficientReturnSpace

NoVehicleEnteringLane

NoPostalVehicleStopping

NoActiveEmergencyVehicles

NoDeliveryVehicleStopping

VehicleNotAttemptingToPass
VehicleNotTailgating

VehicleNotClosingRapidly
NoActiveEmergencyVehicles

DistToOnComingVehicleOK
OncomingVehiclesNormal BEHAVIOR

GENERATION
World States

Input State/Situation Output Action

5.5. Step 5 – World State Dependencies on Objects
This step identifies all of the objects, their features and
attributes that need to be measured by the sensing system
to create the world model states described above. Figure 7
continues with the passing example. As described above,
one of the aggregate world model states was
“LegalToPass” which was a grouping of a number of
related world states which all deal with various legal
restrictions on the passing operation. One of these
component world states that identify a legal restriction is
“NoRailroadCrossingInPassZone”. In this step, for each
of the identified world states we wish to identify all of the
objects, their features, and attributes relevant to creating
each named world state value. For the world state named

“NoRailroadCrossingInPassZone”, these objects would
include the railroad crossbuck emblem, crossing lights,
crossing gate, crossing signs either alongside the road or
painted on the road surface, the railroad tracks, and the
train itself. For each of these objects, we identify
characteristic features or attributes that will be used for
recognition of the object (e.g. the width and length of the
crossbuck planks) and/or its state (e.g. flashing lights or a
lowered gate as indicator of active warning state).

Step 4 has defined a surprisingly large set of named world
states that are relevant to decisions that have to be made at
each decision point in the task. Now, in Step 5 we find
that each of these world states might result from a number
of objects and each of these has multiple features and
attributes required for their recognition. We see that the
size of the knowledge base is extremely large, but the RCS
methodology’s approach to the grouping and
representation of this knowledge base has created a
manageable structuring. We have a place to put each piece
of knowledge and we use the task context to encode much
of the relationship of the knowledge elements to each
other.

NoBridgeInPassZone

NoIntersectionsInPassZone
LaneMarkingsAllowPass
“NoPassZone”-

NoTollBothInPassZone
NoTunnelInPassZone

NotInEffectLights (pos, size, state)
Crossing Gate (pos,

Signs (pos, facing-dir, loc,
text and graphics)

Tracks (pos, size, dir)

Train (pos, dir, state)

CrossBuck(length,

NoRailroadXInPassZone

NoTransitOrSchoolBusStopping
NoConstructionInPassZone

World StatesObjects, Features

width, orient, pos)

length, height, state)

5.6. Step 6 – Measurement Resolutions
In this last step, we want to define the resolution
requirements for the measurement of objects for specific
task decisions. We do this by determining the expected
distances to these objects during particular task activities.
In the case of the task activity of passing a vehicle in front,

Figure 7. Example of the objects that are used to establish

the “NoRailroadXinPassZone” world state.

we have to be able to see objects such as the railroad
crossbuck at the far limit of the expected passing zone.
For a vehicle passing on a 75 kph road, the passing zone
could easily be 200 m or more. This means that the
crossbuck, which is found at the railroad crossing itself,
(whereas warning signs might be up to 300 m before the
crossing) would have to be sensed and recognized by the
sensory processing system at this distance. Since we know
the size of the crossbuck plank elements, we can make an
estimate of the absolute minimum sensory processing
capability required to recognize it at this distance.

These specifications of the objects, attributes, features, and
measurement resolutions have been derived from a detailed
analysis of the world states required to evaluate a
particular task branching condition situation. This allows
us to provide a very detailed specification as to what
sensory processing is required in order to do specific tasks
and subtasks. This is important because one of the single
biggest impediments to the implementation of autonomous
driving control systems is the lack of capability of the
sensory processing systems. The identification of the
objects of interest for particular task activities focuses the
attention of the sensory processing on these objects that
should be measured at the present state of the task, leading
to very efficient and effective use of this very compute
intensive resource. It additionally helps to identify early
on, during system design, which tasks are even feasible
given the present state-of-the-art in sensory processing and
points the direction to research areas to be developed for
other capabilities to be realized.

This also allows for the development of performance
specifications in order to qualify systems for different
driving capabilities [10].

6.0 Conclusion and Future Prospects
In many ways, 4D/RCS is a superset of Soar, ACT-R,
ICARUS, IMPRINT, Dickmanns 4-D approach [13], and
even behaviorist architectures such as Subsumption [12]
and its many derivatives. 4D/RCS incorporates and
integrates many different and diverse concepts and
approaches into a harmonious whole. It is hierarchical but
distributed, deliberative yet reactive. It spans the space
between the cognitive and reflexive, between planning and
feedback control. It bridges the gap between spatial
distances ranging from kilometers to millimeters, and
between time intervals ranging from months to
milliseconds. And it does so in small regular steps, each of
which can be easily understood and readily accomplished
through well known computational processes.

Each organizational unit in 4D/RCS refines tasks with
about an order of magnitude increase in detail, and an
order of magnitude decrease in scale, both in time and
space. At the upper levels, most of the computational
power is spent on cognitive tasks, such as analyzing the

past, understanding the present, and planning for the
future. At the lower levels, most of the computational
power is spent in motor control, and the early stages of
perception. 4D/RCS makes the processes of intelligent
behavior understandable in terms of computational theory.
Thus, it can be engineered into practical machines.

References

 1. "SoarTech," 2004,
http://www.soartech.com/htmlonly/projects.php,.

 2. Albus, J., "A Theory of Cerebellar Function,"
Mathematical Biosciences, Vol. 10, 1971, pp. 25-
61.

 3. Albus, J., "Outline for a Theory of Intelligence,"
IEEE Transactions on Systems Man and
Cybernetics, Vol. 21, 1991, pp. 473-509.

 4. Albus, J., "The NIST Real-time Control System
(RCS): An Approach to Intelligent Systems
Research," Journal of Experimental and Theoretical
Artificial Intelligence, Vol. 9, 1997, pp. 157-174.

 5. Albus, J. and Meystel, A., Engineering of Mind,
John Wiley & Sons, Inc. 2001.

 6. Albus, J., Schlenoff, C., Madhavan, R., Balakirsky,
S., and Barbera, A., "Integrating Disparate
Knowledge Representations Within 4D/RCS,"
Proceedings of the 2004 AAAI "Achieving Human-
Level Intelligence through Integrated Systems and
Research" Fall Symposium, 2004.

 7. Albus, J. S., Brain, Behavior, and Robotics,
McGraw-Hill 1981.

 8. Anderson, J., The Architecture of Cognition,
Lawrence Erlbaum Associates, Mahwah, N.J., 1983.

 9. Archer, R., Lebriere, C., Warwick, W., and Schunk,
D., "Integration of Task Network and Cognition
Models to Support System Design," Proceedings of
the Collaborative Technology Alliances
Conference: 2003 Advanced Decision Architectures,
College Park, MD, 2003.

 10. Barbera, A., Horst, J., Schlenoff, C., Wallace, E.,
and Aha, D., "Developing World Model Data
Specifications as Metrics for Sensory Processing for
On-Road Driving Tasks," Proceedings of the 2003
Performance Metrics for Autonomous Systems
(PerMIS) workshop, 2003.

 11. Barbera, T., Fitzgerald, M., Albus, J., and Haynes,
L. S., "RCS: The NBS Real-Time Control System,"
Proceedings of the Robots Conference and
Exposition, Detroit, Michigan, 1984.

 12. Brooks, R. A., "A Robust Layered Control System
for a Mobile Robot," MIT AI Lab, A. I. Memo 864,
Sept. 1985.

 13. Dickmanns, E. D., "An Expectation-Based Multi-
Fical Saccadic (EMS) Vision System for Vehicle

Guidance," Proceedings of the 9th International
Symposium on Robotics Research (ISRR'99), Salt
Lake City, 1999.

 14. Fodor, J., The Mind Doesn't Work That Way, MIT
Press, Cambridge, MA, 2000.

 15. Gonzalez, C., "ACT-R Implementation of an
Instance-Based Decision Making Theory,"
Proceedings of the Collaborative Technology
Alliance Conference: 2003 Advanced Decision
Architectures, College Park, MD, 2003.

 16. Kieras, D. and Meyer, D. E., "An Overview of the
EPIC Architecture for Cognition and Performance
With Application to Human-Computer Interaction,"
Human-Computer Interaction, Vol. 12, 1997, pp.
391-438.

 17. Kurzweil, R., The Age of Spiritual Machines,
Penguin Books, New York, 1999.

 18. Laird, J. E., Newell, A., and Rosenbloom, P. S.,
"SOAR: An Architecture for General Intelligence,"
Artificial Intelligence, Vol. 33, 1987, pp. 1-64.

 19. Minton, S. N., "Quantitative Results Concerning
the Utility of Explanation-Based Learning,"
Artificial Intelligence, Vol. 42, 1990, pp. 363-391.

 20. Pierce, C. S., Collected Papers, Band VII (Hrsg.),
Arthur W. Burks 1958.

 21. Pylyshyn, Z., The Robot's Dilemma: The Frame
Problem in Artificial Intelligence, Ablex, Norwood,
N.J., 1987.

 22. Searle, J., The Rediscovery of the Mind, MIT Press,
Cambridge, MA, 1992.

 23. Shapiro, D. and Langley, P., "Controlling Physical
Agents Through Reactive Logic Programming,"
Proceedings of the Third International Conference
on Autonomous Agents 386-387, ACM Press,
Seattle, 1999.

 24. Shoemaker, C., Bornstein, J., Myers, S., and
Brendle, B., "Demo III: Department of Defense
Testbed for Unmanned Ground Mobility," SPIE
Conference on Unmanned Ground Vehicle
Technology, SPIE Vol. 3693, Orlando, FL, 1999.

